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Introduction

The proper handling of customer 琀椀ckets and
maintenance requests is pivotal for enterprises. It
directly impacts customer sa琀椀sfac琀椀on and conse-
quen琀椀ally it leads to higher economic and brand-
image revenues. Several methods based on Nat-
ural Language Processing (NLP) have been devel-
oped to classify, tag, and priori琀椀ze customer sup-
port requests and maintenance 琀椀ckets. However,
the speci昀椀c domain of each company, in conjunc-
琀椀on with the di昀昀erent products and services of-
fered, make it di昀케cult to develop generalized so-
lu琀椀ons.

Purpose

In this work, we propose two approaches to predict
the type of fault from the text of maintenance support
琀椀ckets: (i) Kernel Methods in conjunc琀椀on with Boost
Decision Trees (Spectrumboost), and (ii) Neural Net-
work for Mul琀椀ple Representa琀椀on Learning (DeepMRL).
Those models are tested and compared against state-
of-the-art solu琀椀ons based on Transformers architec-
tures on a real-world set of 131305 琀椀ckets in the Ital-
ian language. Results suggest that the proposed mod-
els outperformTransformers both in the predic琀椀on ac-
curacy and in the 琀椀me and computa琀椀onal resources
required for their training.
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Dataset Class 1 Class 2 Class 3 Avg. Seq.
length

Training 42885 29246 22378 59.87±39.47

Valida琀椀on 4659 3378 2465 59.15±39.40

Test 11888 8113 6293 59.92±38.88

Total 59432 40737 31136 59.82±39.34(45.3%) (31.0%) (23.7%)

Maintenance 琀椀ckets sequence length and
division in training, valida琀椀on and test set.
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The novel Mul琀椀ple Representa琀椀on Learn-
ing (MRL) layermimics the logic behindMul-
琀椀ple Kernel Learning by learning a new data
representa琀椀on Xcomb as a linear or non-
linear combina琀椀on of base reprenta琀椀ons
φi(x), where φi can be an arbitrary func琀椀on
(also a kernel one), a BERT encoding, a NN
embedding, or other.

By applying constraints to the learned
weights ωi, it is possible to compute di昀昀er-
ent type of combina琀椀ons, such as Convex
and A昀케ne approaches.
The new representa琀椀on is then passed
through a fully-connected layerwith L1 and
L2 regulariza琀椀on to learn non-linear depen-
dencies.

SpectrumBoost

SpectrumBoost extracts features from text using the
p-Spectrum kernel with Nyström Approxima琀椀on. This
kernel counts any possible con琀椀guous sub-sequence of
length p and it focuses on local informa琀椀on. These are
fed into an XGBoost classi昀椀er, that provides the label.
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Results

Experiments have been conducted using 2x Nvidia
GTX 1070, with the excep琀椀on of 2x Nvidia V100 for
Transformer-based models.

Transformers outperform the SGD baseline, but they
require a large training 琀椀me even employing high-
performance Nvidia V100 GPUs.

Our SpectrumBoost is able to surpass in performance all
the models based on Transformers, achieving a gain of
2.8% with respect to SGD and 1.1% with respect to the
Electra architecture in terms of AUC. It also outperforms
the other models in terms of F1, with a 琀椀me comparable
with SGD.

The newly proposed DeepMRL outperforms all other
models in all the considered metrics. In terms of AUC,
DeepMRL shows a 3% improvement compared to our
baseline and 1.7% with respect to Electra. Considering
the othermetrics, DeepMRLoutperforms the baseline and
Transformer models, leading to an overall gain of 0.9% for
F1 score, and 1.3% for Balanced Accuracy.
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Algorithm F1 score Balanced Accuracy AUC score Time

SGD (p = 5) 0 .693±0 .004 0 .684±0 .014 0 .837±0 .006 1:05:03 ± 0:00:04

BERT 0.720±0.001 0.716±0.003 0.843±0.005 2:13:25 ± 0:16:07
Electra 0.720±0.002 0.709±0.012 0.850±0.002 5:33:56 ± 0:18:39
Gilberto 0.720±0.003 0.713±0.002 0.838±0.005 5:45:38 ± 1:36:04
Umberto 0.716±0.001 0.713±0.004 0.837±0.002 4:31:53 ± 2:18:46
Alberto 0.717±0.001 0.714±0.001 0.834±0.001 2:23:08 ± 0:07:26

SpectrumBoost (p = 4) 0.726±0.001 0.711±0.001 0.861±0.001 1:13:23 ± 0:00:08
DeepMRL (p = [4, 5, 6]) 0.729±0.001 0.729±0.001 0.867±0.002 3:19:48 ± 0:00:27
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