

Myocardial Fibrosis detection using Kernel Methods: preliminary results from a Cardiac Magnetic Resonance study

F. Agostini¹² T. Sciarretta³ M. Pizzi³ A. Cipriani³ S. Campese¹ M. Zanetti¹

¹Department of Physics and Astronomy, University of Padua ²Department of Control and Computer Engineering, Polytechnic University of Turin ³Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua

stefano.campese@phd.unipd.it

federico.agostini@polito.it

alberto.cipriani@unipd.it

Background

Asserting the presence of **Myocardial Fibrosis** using Late Gadolinium **Enhancement** (LGE) technique from Cardiac Magnetic Resonance (CMR) images is sometimes a **complex task**, even for experienced cardiac imagers. The application of **Artificial Intelligence** models to the evaluation process can be of help for **enhancing diagnostic ac**curacy.

In this work, we test different Machine Learning (ML) algorithms, namely Kernel Methods with Support Vector Machine (SVM) and **Convolutional Neural Network** (CNN) to a cohort of consecutive CMR studies. The goal is a **binary classification** task aimed to identify LGE/Myocardial Fibrosis present/absent.

Methods and Results

Dataset consists of 642 CMR scans plus annotations made by **expert cardiologists** in the form of an Excel file, where the presence of Myocardial Fibrosis is indicated alongside its location in the bullseye diagram of the heart. Subjects are **equally divided** into LGE/Myocardial Fibrosis YES/NO, according to the presence/absence of scars.

Preprocessing

Raw DICOM files are **preprocessed** through an automated pipeline, in order to retrieve only short-axis post contrast acquisitions. Heart regions are individuated using a YOLO network, in order to focus only on data of interest. Finally, for each subject **10 slices** are extracted through interpolation, and all images resized to **128 by 128 pixels**. Dataset is divided into training and test sets, with proportions 80%-20%.

2.5D CNN	PCA + SVM	PCA + MKL
$ \begin{array}{c} \hline \\ \hline $	Pre-Processed Data	Flattening + PCA Pre-processed Data

The first analysis is based on **CNN** models, pre-trained on the ImageNet dataset. The training is done with **shared weights** and optimized monitoring the learning rate, and implementing early stopping and standard data

Improved results could be obtained using state-of-the-art **Multiple Kernel Learning** (MKL) algorithms. First, the dimensionality is reduced through **PCA** and then MKL is applied. With this approach, the final Kernel is given by an optimal combination of base Kernels. Training is performed using Cross-Validation.

augmentation techniques.

Best model is found using MobileNetV2 as backbone. Results show an Accuracy of 58% and a Sensitivity of **58%**.

True LGE				
ΥES	61%	39%	ed LGE	
NO	45%	55%	Predict	
	YES	NO		

input to a **SVM**.**Different Kernels** (e.g. Linear, Gaussian, Cossim) are tested and models are trained and optimized using **Grid Search** with **Cross-Validation**.

Top results are obtaining through a combination of multiple Gaussian Kernels; they feature 71% Accuracy and 72% of Sensitivity.

Declaration of Interest The authors declare not to have any past or present conflict of interest that concerns the work hereby presented.

Sensitivity.

Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging - A Joint Summit of the EACVI and SCMR